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Abstract 

Background: Household surveys are the main source of demographic, health and socio‑economic data in low‑ and 
middle‑income countries (LMICs). To conduct such a survey, census population information mapped into enumera‑
tion areas (EAs) typically serves a sampling frame from which to generate a random sample. However, the use of 
census information to generate this sample frame can be problematic as in many LMIC contexts, such data are often 
outdated or incomplete, potentially introducing coverage issues into the sample frame. Increasingly, where census 
data are outdated or unavailable, modelled population datasets in the gridded form are being used to create house‑
hold survey sampling frames.

Methods: Previously this process was done by either sampling from a set of the uniform grid cells (UGC) which are 
then manually subdivided to achieve the desired population size, or by sampling very small grid cells then aggre‑
gating cells into larger units to achieve a minimum population per survey cluster. The former approach is time and 
resource‑intensive as well as results in substantial heterogeneity in the output sampling units, while the latter can 
complicate the calculation of unbiased sampling weights. Using the context of Somalia, which has not had a full 
census since 1987, we implemented a quadtree algorithm for the first time to create a population sampling frame. 
The approach uses gridded population estimates and it is based on the idea of a quadtree decomposition in which an 
area successively subdivided into four equal size quadrants, until the content of each quadrant is homogenous.

Results: The quadtree approach used here produced much more homogeneous sampling units than the UGC 
(1 × 1 km and 3 × 3 km) approach. At the national and pre‑war regional scale, the standard deviation and coefficient 
of variation, as indications of homogeneity, were calculated for the output sampling units using quadtree and UGC 
1 × 1 km and 3 × 3 km approaches to create the sampling frame and the results showed outstanding performance for 
quadtree approach.

Conclusion: Our approach reduces the manual burden of manually subdividing UGC into highly populated areas, 
while allowing for correct calculation of sampling weights. The algorithm produces a relatively homogenous popula‑
tion counts within the sampling units, reducing the variation in the weights and improving the precision of the result‑
ing estimates. Furthermore, a protocol of creating approximately equal‑sized blocks and using tablets for randomized 
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Background
In all countries, surveys and census data are the main 
source of demographic, health and socio-economic data. 
In particular, household surveys are the main means of 
providing detailed health/socio-economic information 
in a timely fashion, since the burden of conducting of 
the full census is labor and cost-prohibitive. In low- and 
middle-income countries (LMICs), surveys such as the 
Living Standard Measurement Surveys (LSMS), the UN’s 
Multiple Indicator Cluster Survey (MICS) and the Demo-
graphic and Health Surveys (DHS) have been routinely 
implemented since the 1980s [1–3]. Household surveys 
typically rely on census data as a sampling frame [4]. The 
use of census data as a source of the sampling frame is 
critical as it allows survey designers to efficiently allocate 
their sample across areas or populations as well as iden-
tify groups typically under-represented or rare [5]. The 
sampling frame also represents the best-known distri-
bution of the population at the time of the sample selec-
tion, making it a critical input to the weight calculations. 
However, the use of census data as the sampling frame 
is problematic in many countries around the world, 
particularly in LMICs, since their census data are often 
outdated, incomplete, or missing, or inaccessible. For 
example, Afghanistan has not conducted a full national 
census since 1979 [6], and Somalia since 1987 [7].

Where full census data are not available in a country, 
gridded population datasets have emerged over the last 
decade as a potential alternative to building household 
survey sampling frames [8–11]. Gridded population data 
are usually produced by models to give estimate counts of 
population density in uniform grid cells. Currently avail-
able gridded population datasets are derived with models 
that either disaggregate census data or predict popula-
tion density based on a subset of the population, and can 
incorporate information from spatial covariates, such as 
land cover type, road infrastructure, nightlight intensity 
and settlement areas [12]. Several gridded population 
datasets with different spatial resolutions are available in 
LMICs including WorldPop [13], Gridded Population of 
the World (GPWv4) [14], Global Human Settlement Pop-
ulation Grid (GHS-POP) [15], High-Resolution Settle-
ment Layer (HRSL) [16], Global Rural–Urban Mapping 
Project (GRUMP) [17], LandScan [18], and Demobase 
Population datasets [19].

From a survey practitioner perspective, a key dif-
ference between gridded population data and census 
data is that grid cells are uniform in size but variable in 

population totals whereas census EAs vary in size but 
have similar population totals. From a sample design effi-
ciency perspective, similar population estimates in the 
Primary Sampling Unit (PSU)—which are the grid cell 
and EA, respectively—equally sized population leads to 
greater precision in the resulting estimates. Because of 
this property, gridded population estimates can be use-
ful for survey sample design even when a census frame 
exists because it can be used to update older census data-
sets, subdividing EAs that have grown too large. Simi-
larly, being able to identify areas which have seen a net 
decrease in population can also increase the efficiency 
over an outdated census.

In practice, only two gridded population datasets have 
been used for household survey sampling: LandScan [20] 
and WorldPop [12]. For instance, Galway et al. [10] used 
LandScan to generate 1 × sampling units with probability 
proportional to size (PPS) and selected one household in 
one building and performed a random walk [10]. A grid-
based sample design framework for household surveys 
using the WorldPop dataset was conducted in DRC and 
a nonparametric estimator was applied to evaluate the 
sample design and determine sample size estimation [21]. 
In the context of creating household sampling frames, 
WorldPop may offer three advantages to LandScan. First, 
WorldPop is available at a fine geographic scale that suits 
the scale at which household survey activities occur; in 
densely settled areas, each 100 × 100 m WorldPop cell 
contains a maximum of hundreds, rather than thou-
sands of households found in some 1 × 1 km LandScan 
cells. In surveys where LandScan was used as a sampling 
frame, intensive manual segmentation [22] or complex 
automated segmentation [23] was required. Second, 
WorldPop is a model of the residential population while 
LandScan is a model of the 24-h ambient population—
the average of the day-time commuter population and 
night-time residential population [13]. Third, WorldPop 
routinely publishes accuracy assessments [13, 24–27].

Considering the lack of ground truth data in Somalia, 
it was a challenge to assess the accuracy of the existing 
available gridded population datasets at the time of this 
study. In addition, such analysis requires full research 
commitment, and this might not fall within the scope 
of this paper. However, gridded population datasets 
are being produced for countries with similar condi-
tions [28–30]. Overall the accuracy and reliability of 
these approaches are increasing as new research into 
modelling approaches and predictive covariates. For 

selection of a household in each block mitigated potential selection bias by enumerators. The approach shows labour, 
time and cost‑saving and points to the potential use in wider contexts.
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instance, in collaboration with other partners, World-
Pop has produced a disaggregated population dataset to 
100m × 100m grid square in Afghanistan and accuracy 
measuring observed vs predicted population numbers 
showed correlation coefficients of > 0.95 at the district 
and province level [28]. Recently, under the leadership 
of WorldPop within the Geo-Referenced Infrastructure 
and Demographic Data for Development  (GRID3) pro-
ject, high resolution population estimates were produced 
for DRC and Nigeria and uncertainty in the population 
estimates within each 100 m grid cell was calculated 
across the predicted population areas [29, 30]. While we 
acknowledge that modelled population estimates will 
never be as good as actual census counts, the results are 
increasingly being used in contexts where such census 
data are simply unavailable.

In previous gridded population surveys, practition-
ers either started with UGCs (e.g. 1 km × 1 km) and 
segmented, sometimes performing a second stage of 
sampling of smaller units within the cell [9, 22, 23], an 
extremely time and/or resource-intensive process. Other 
surveys have sampled small grid cells (e.g. 100 m × 100 
m) and included neighbouring areas after initial cells 
were selected to ensure a minimum population per sam-
pling unit [11]. This approach requires the calculation of 
a complex adaptive sample probability weight or risks 
incorrect weights and estimates [31]. In terms of avail-
able methods, there have been limited efforts made to 
develop tools and approaches for creating a population 
sampling frame from gridded population estimates (see 
GridSample [32] and Geo-sampling tool [33] for nota-
ble exceptions). Our approach has improved and solved 
some of the challenges that have faced these efforts. 
Firstly, it allows an accurate calculation of sampling 
probability weights compared to GridSample. Secondly, 
in our approach, we can define the population and area 
constraints based on our requirements, resulting in a 
user-friendly sampling frame with much-improved popu-
lation homogeneity within the sampling units. Therefore, 
an ideal gridded population sampling frame would effi-
ciently group cells into areas of varying size with similar 
population totals before sampling.

Here, we sought to develop a sampling frame for a 
household sampling approach in Somalia where the sta-
tionary population is overwhelmingly rural, and upwards 
of a third of the population is nomadic [7]. In addition, 
in large parts of the country, it is not possible to conduct 
a complete household listing due to security considera-
tions for field staff [34, 35]. This paper describes a novel 
approach to pre-define a survey population sampling 
frame using gridded population data. The goal was to 
support the design and implementation of a household 
socio-economic survey that was representative of urban, 

rural, the internally displaced population (IDP) and 
nomadic people in Somalia. Our approach uses GIS tech-
niques, several datasets, and a quadtree algorithm [36] to 
recursively divide the country into areas with homoge-
nous population sizes. We provide example outputs, out-
put evaluation criteria, and clear steps in an appendix to 
replicate these methods.

Methodology
General approach
Here we describe the process for deriving enumeration 
areas with desirable area and population characteris-
tics based on gridded population data. We used high-
resolution (100 m) estimates of population density for 
Somalia in 2015 [12] as the basis for our process. Because 
we needed to stratify the population into distinct types 
(based on administrative boundaries and population 
types). We also obtained vector data of administrative 
boundaries, IDP camp locations, water point and urban 
EA boundaries. Our process starts by stratifying the 
country based on the administrative boundary and popu-
lation types. Then, the quadtree algorithm was employed 
to generate the population sampling frame within each 
stratum using a high-resolution gridded population. 
Often, this algorithm is used for spatial data structure 
and in image compression. The approach is based on the 
idea of a quadtree decomposition in which an image suc-
cessively subdivided into four equal size quadrants, until 
the content of each quadrant is homogenous. For the first 
time, this idea was implemented to generate a population 
sampling frame using a high gridded population dataset. 
After generating the population sampling frame, GIS and 
manual approaches were adopted to complete the survey 
sample and selection process. A flowchart of the process 
is given in Fig. 1.

The developed methodology was designed to imple-
ment wave 2 of the Somali High-Frequency Survey [37] 
to better understand livelihood and vulnerabilities and, 
particularly to estimate national poverty indicators. The 
fieldwork was conducted between December 2017 and 
February 2018. Based on previous data and targeting 
estimates of consumption indicators with less than 10% 
relative standard errors for key sub-populations, a sample 
size of 6384 households was planned (Table 1, Fig. 2).

Somalia census data
Somalia’s first national census was conducted in 1975 
which published limited results [7]. The most recent 
census in Somalia was carried out in 1986/1987 but the 
results were not published officially [38]. Since then 
many efforts have been made by development agen-
cies to obtain reliable population distribution data. For 
instance, Vaidyanathan [39] made the most notable 
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attempt in his consultancy report and the population 
totals and demographic characteristics were widely 
accepted as the most reliable data, with a projected 
population for 2005 of just over seven million peo-
ple. Another attempt was made by the United Nations 
Development Programme (UNDP) in 2005 to estab-
lish the estimated population by sex and region from 
2005 to 2010 for each year. In 2014, the United Nations 
Population Fund (UNFPA) conducted the first exten-
sive household survey among the Somali population 

in decades [7]. In this report, comprehensive and reli-
able population estimates by region and important 
demographic characteristics were provided. Based on 
this report the total population was estimated to be 
12.3 million, of which 42% are urban, 23% rural, 26% 
nomadic, and 9% are internally displaced [7]. However, 
none of these datasets mentioned previously provide a 
suitable sampling frame for a national survey in terms 
of population counts/estimates at a fine geographic 
scale.

Fig. 1 Schematic diagram showing the methodology adopted in this research
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Boundary data
The 1986 pre-war region boundaries were used to define 
18 pre-war administrative regions (Fig.  2) [6]. For the 
purpose of this study, other boundaries were either cre-
ated or obtained for urban, rural and IDP camp bounda-
ries to independently sample different population types. 
IDP boundaries were created from camp locations which 
were available in different spatial formats (polygons, lines 
and points; see Additional file 1: Table S2 for the source 
of IDP settlements boundaries). These were harmonised 
to boundary polygons (see Additional file 1: Figure S2 for 
IDP boundary creation).

The urban area boundary was defined by previous 
urban enumeration areas which were used in the 2014 
Population Estimation Survey of Somalia (PESS) [7]. 
The remaining areas outside of the urban areas and IDP 

Table 1 Comparison of  population sizes among  the   
population sampling units for  quadtree and  uniform grid 
cell (UGC) 1 × 1 km and  3 × 3 km population sampling 
frame at the country scale

Statistical summary Quadtree Uniform grid cell

1 × 1 km 3 × 3 km

Minimum 0 0 0

Maximum 3498 42,384 129,132

Mean 44 16 122

Standard deviation 232 330 1648

Coefficient of variation 5 20 14

Fig. 2 Boundaries of 18 pre‑war regions in Somalia with the spatial distribution of 6384 selected samples in the secure areas
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camps were considered as rural areas. The overwhelming 
majority of Somalia is rural, with vast areas likely includ-
ing nomadic peoples who account for approximately 3.2 
million people in Somalia [7].

Sample stratification
For the survey to deliver estimates for the main admin-
istrative subdivisions of the country and for sub-pop-
ulation types, strata were defined by the intersection of 
pre-war region boundaries and population types (urban, 
rural, nomadic and IDP) to create a total of 57 strata (see 
Additional file  1: Figure S1 for stratification map). Sub-
populations in the urban centers of Mogadishu, Baidoa, 
and Kismaayo, in fisheries livelihood zones in coastal 
areas, and IDP host communities were of particular 
interest and therefore deliberately oversampled. The 
remaining allocation was based on a Neyman technique 
of optimal allocation to select PSUs in each design stra-
tum [40], while maintaining a minimum of two PSUs per 
stratum to allow for the computation of stratum level 
variance estimates. Optimal allocation is given by:

where nh is the sample size in stratum h, n is the total 
sample size, H is the total number of strata, Nh is the total 
population of stratum h, N is the total overall population, 
and Sh is the standard deviation in stratum h. Hence, the 
number of households to be interviewed per stratum is 
mainly determined by the variability of consumption 
within the stratum (Sh). An estimate of Sh was derived 
from the results of the Somalia High-Frequency Sur-
vey SHFS Wave 1 [41]. The population size only matters 
for practical purposes in very small strata below 10,000 
households. In the absence of a recent population census, 
the population of each stratum was derived from UNF-
PA’s Population Estimation Survey of Somalia (PESS), 
which contains detailed estimates for each population 
type and administrative unit of interest (see Additional 
file  1: Table  S1 for summary of allocated sample units 
within strata).

Gridded population dataset
The choice of gridded population surface is important 
for the reliability of the underlying sampling frame. In 
Somalia, High-Resolution Settlement Layer (HRSL) 
and Demobase were not available at the time of this 
study. LandScan, Global Rural–Urban Mapping Pro-
ject (GRUMP) and Gridded Population of the World 
(GPWv4) version 4 each estimate the population in 1 
km × 1 km grid cells which is too large to use as a sam-
pling unit in urban areas. Global Human Settlement 

nh =

NhSh
∑

H

h=1
NhSh

Population Grid (GHS-POP) is essentially the Gridded 
Population of the World (GPWv4) dataset further dis-
aggregated to 250 m × 250 m grid cells and constrained 
to settled areas. Settlement areas, defined by the GHS-
BUILT dataset, unfortunately often omit small rural set-
tlements and overestimate the population in urban areas 
[42]. The WorldPop dataset for Somalia was created 
under the AfriPop project based on a land cover-based 
model Fig. 3a) [43]. Although less accurate than the more 
current WorldPop Random Forest-based estimates [13], 
these early WorldPop estimates were still more accurate 
than other gridded population datasets including GPW, 
Global Rural–Urban Mapping Project (GRUMP) and 
LandScan [44]. Further, WorldPop produces estimates in 
100 m × 100 m grid cells, allowing the greatest flexibil-
ity to aggregate cells into larger sampling units. Census-
independent gridded population datasets are expected to 
become available in multiple LMICs in 2019 but were not 
available at the time of this work [45, 46].

Given the coarseness of the input population estimates 
in this model, we observed that the population might 
not have been distributed adequately within settlement 
areas. To improve this limitation and for the sake of bet-
ter sampling weight calculation, a Gaussian smoothing 
kernel technique with a standard deviation of 500 m was 
applied (Fig. 3b) [47]. The original and smoothed popula-
tion datasets, along with high-resolution satellite imagery 
can be seen in Fig.  3. To assess the impact of applying 
a Gaussian smoothing kernel technique with a stand-
ard deviation of 500 m on the homogeneity of the out-
put sampling units, a comparison analysis is conducted 
between quadtree sampling units derived from smoothed 
and unsmoothed WorldPop datasets.

Population sampling frame using a quadtree algorithm
In urban areas and IDP camps, PSU boundaries were 
clearly defined. However, in rural areas where PSU 
boundaries were not predefined, we created PSUs using 
the quadtree algorithm by partitioning the smoothed 
gridded population layer into sampling units of approx-
imately equal population. In a quadtree algorithm, each 
internal node in the underlying tree has exactly four 
children [36]. This approach is commonly employed 
to partition a two-dimensional space by recursively 
decomposing it into four equal quadrants or regions 
[49]. The approach splits an area into successively 
smaller quadratures by checking to see whether the 
content of each split meets a prescribed value. The out-
put could be rectangular or square or may have arbi-
trary shapes. A quadtree algorithm can categorize many 
types of data including points, lines and regions [49]. 
The entire area of rural strata was divided into square 
grid cells using a quadtree algorithm. In this case, the 
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population map was used as the unit of measure and 
was split successively until each square had a popula-
tion of less than 3500 (Fig. 4). As well we restricted cell 
sizes to have a maximum geographical area of 3 × 3 
km to keep enumeration areas manageable in size for 
field teams. The result was a spatially complete set of 

sampling units with smaller units in areas of dense pop-
ulation. The quadtree algorithm was implemented in R 
[50] and the code are provided in Additional file 1: Sec-
tion 2 for Quadtree R based code.

Sampling strategy
The sampling frame for this survey is the exhaustive list 
of sampling units for every stage in the multi-stage selec-
tion process (e.g. PSU, Secondary Sampling Unit (SSU), 
Tertiary Sampling Unit (TSU) and so on). Multistage 
sampling is employed near universally for household 
surveys, particularly as a cost control strategy where 
the population is sparsely distributed [51]. For the cur-
rent work, each stratum has a list of sampling units. Each 
sampling unit must have an estimated population to 
derive a selection probability as the estimated population 
divided by the total population of the stratum. Nomadic 
populations were not included in this sampling frame 
due to their lack of a permanent place of residence, and 
are treated in a separate piece of work.

Selection of PSUs and first‑stage sample selection
The quadtree algorithm was used to derive PSUs such 
that each PSU has a known area and estimated popula-
tion. Sample selection was with-replacement and based 
on a systematic random sampling technique with selec-
tion probability proportional to size (PPS). Assuming 

Fig. 3 a Original WorldPop layer [SOM15adjv4.tif = Somalia (AGO) population count map for 2015 [15] adjusted to match UN national estimates 
(adj), version 4 (v4)], b smoothed layer after applying a Gaussian smoothing kernel technique with a standard deviation of 500 m and c 
high‑resolution satellite imagery [48]

Fig. 4 Results of the quadtree approach on smoothed WorldPop 
population data in Baydhabo, Somalia. Here, the maximum grid size is 
set to 3 × 3 km and the maximum population set to 3500
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accurate population estimates, in PPS random sampling, 
each unit’s probability of selection is proportional to its 
population (Probability > 0). In addition, in each stratum 
with an additional 20% replacement sample was selected 
in case the main PSUs needed to be replaced due to the 
absent population. While replacements generally lead to 
bias in estimates, replacements in the case of no popu-
lation found do not cause bias because the empty PSU 
is determined to be out-of-scope. It is, however, not 
possible to calculate accurate probability weights for 
replacement households as the replacement PSU must 
be assumed to have the same probability of selection as 
the original, even though it has a different population. 
All selected PSUs were visually checked on current high-
resolution imagery basemap [48], and PSUs with no vis-
ible structures were substituted with a randomly selected 
replacement PSU.

Creation of SSUs and third stage sample selection
The selected PSUs were manually segmented into 12 
approximately equal-sized SSUs each (Fig. 5). We manu-
ally delineated SSUs, using current high-resolution sat-
ellite imagery from the Esri satellite imagery basemap 
[48] by counting the number of visible structures and 
taking account of natural boundaries. Each SSU con-
tained 1 to 12 structures visible from a central point on 
the ground. For several special cases, three criteria were 
employed: (i) PSU containing less than 12 structures were 
not segmented, (ii) in PSUs containing more than 150 

structures, more than 12 SSUs were delineated with 12 
buildings each, (iii) in very large PSUs that were selected 
two or three times in a stratum with a short list of sam-
pling units, the number of delineated SSU was scaled 
up proportionately to the number of times the PSU was 
selected.

SSUs were selected with equal probability from a 
household list generated by enumerators canvasing the 
selected areas to produce a list of all residential struc-
tures, and one structure was randomly selected in each 
SSU [52]. At the structure, the enumerator recorded the 
number of households, and the tablet again randomly 
selected one household in the structure to be inter-
viewed. One household per SSU was used to minimize 
potential loss of efficiency due to homogeneity of the 
variables of interest within SSUs. In the general case of 
12 SSUs per PSU, a total of 12 households were selected 
for an interview with one selected household in each 
SSUs, though the number of selected households per 
PSU spanned from 1 to 36 depending on the number of 
SSUs due to multiple selections in strata with small pop-
ulations (see Additional file 1: Section 3 for step by step 
guide to creating field maps).

Comparison of sampling units
An ideal sampling frame is comprised of sampling units 
of approximately equal population size within a given 
stratum to minimize variation in the sampling weights. 
Commonly, the survey practitioner creates UGC which 
sometimes consists of a single cell or a group of smaller 
cells (e.g. 3 × 3 km) to generate the first primary sam-
pling units. This subdivision of the country does not 
consider the population density and area which might 
have an impact on the degree of population homogene-
ity and spatial variation within the sampling units in a 
given region. Therefore, we measure the degree of popu-
lation homogeneity and spatial population variation size 
within the created sampling units by calculating standard 
deviation (std), which is a measure that is used to quan-
tify the amount of variation of a set of values to the mean, 
and coefficient of variation (cv) at country and regional 
scale for both quadtree and UGC 1 × 1 km and 3 × 3 km 
approaches.

Results
Unsmoothed vs smoothed WorldPop data to generate QT 
sampling frame
Figure  6 shows the impact of applying a Gaussian 
smoothing kernel technique with a standard deviation of 
500 m on the homogeneity of the output sampling units 
within the 18 pre-war regions using the QT approach. 
It can be seen from the Fig. 6c that using the smoothed 
WorldPop data has improved population homogeneity 

Fig. 5 Outlines of different sample unit boundaries such as Primary 
Sampling Units (PSU), Secondary Sampling Units (SSU) and Internally 
Displaced People (IDP) on high‑resolution satellite imagery [48]
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within the regional sampling units in the majority of the 
pre-war regions except Woqooyi Galbeed, Sool, Jubbada 
Dhexe and Mudug (std = 17, 12, 6, 3). The highest popu-
lation homogeneity improvement within the output sam-
pling units was observed in Banadir (std = − 74).

Survey sampling units
The quadtree approach used here produced much more 
heterogeneous sampling units than the UGC (3 × 3 km) 
approach (Fig.  7). The quadtree algorithm resulted in 
PSUs with population sizes ranging from 0 to 3500. By 
contrast, the UGC approach created PSUs with popula-
tion sizes ranging from 0 to 42,400 for 1 × 1 km and 0 to 
130,000 for 3 × 3 km. The 2014 Population Estimation 
Survey of Somalia (PESS) resulted in 7210 urban PSUs 
[6], and from various sources, we defined 500 IDP PSUs.

Nationally, population size within PSUs was relatively 
homogeneous using quadtree (std = 232 for quadtree vs 
330 and 1648 for UGC 1 × 1 km and UGC 3km) with a 
lower coefficient of variance (cv = 5 for quadtree versus 
20 and 14 for UGC 1km and UGC 3 × 3 km) (Table  2). 
In pre-war regions, the quadtree results also produced 
PSUs with more homogenous standard deviation (std) 
(113 < std > 1047) (Fig.  8a, e) whereas UGC had much 
greater range of variations [1 × 1 km (113 < std 7450), 
3 × 3 km (113 < std > 3952)] (Fig. 8b, f ). Similarly, this dif-
ference can be seen in coefficient of variation comparison 
maps in which coefficient of variation ranged from 1 to 

11 for quadtree (Fig. 8c, g) but 1 to 40 for UGC 1 × 1 km 
(Fig. 8d) and 1 to 25 for UGC 3 × 3 km (Fig. 8h). Figure 9 
summarizes these results in a boxplot showing greater 
variability in PSU population size in quadtree pre-war 
regions results compare to the UGC 3x3km.

Summary of field survey results
The methodology presented here was used to design 
the survey strategy for Wave 2 of the Somalia High-Fre-
quency Survey which was conducted between Decem-
ber 2017 and February 2018, collecting data from 6384 
households representing urban, rural, displaced and 
nomadic populations [37]. The results from the survey 
show that the Somali population is predominantly young, 
with close to half of Somalis younger than 15 years old 
(Table 2), while the ratio women to men in the popula-
tion is approximately even. Only 42% of households are 
headed by women (Table  2). In line with a very young 
population, the mean and median household size is large 
at 5.37 and 5, respectively, and a dependency ratio of 1.3 
(Table 3). The poverty rate in areas that the survey could 
access is 69% and poverty rates in urban households 
(64%) are lower than rural (72%), IDP (76%), and nomadic 
households (72%) (Table  3). Almost 80% of households 
have access to improved sources of water and have liter-
ate household heads, while less than 50% have access to 
improved sanitation [37, 53].

Fig. 6 Shows the difference between quadtree regional standard deviation where a unsmoothed WorldPop data, b smoothed WorldPop data were 
used to create population sampling frame and c the difference between the standard deviation of both datasets
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Sampling weight calculations and implication for precision
The sampling weights are based in the inverse probability 
of selection. Following the sample selection methodology 
described in “Sample stratification” section, the probabil-
ity of selection of PSU i in stratum h is P1 = nhk

Nh
 , where k 

is the number of PSUs selected in that particular stratum. 
In the majority of the cases where one household was 

selected from each of the 12 approximately equal sized 
second stage units, the probability of selection of an indi-
vidual household is P2 = 1

mh
 , where mhi

∼
=

nhi
12

 . Appropri-
ate adjustments to the weight calculations were made for 
the three special cases described in “Creation of SSUs 
and third stage sample selection” section.

One consequence of using a gridded population 
approach over a traditional design is that the variation 
in the size of the PSUs leads to high levels of variation 
in the weights [54]. To illustrate the implications, we 
compared the efficiency of the Somali High-Frequency 
Survey design with a subset of the 2015/16 Kenya Inte-
grated Household Budget Survey (KIHBS), was selected 
from a census-based national sampling frame. The full 
KIHBS dataset has more than 21,000 observations, but 
we limit our analysis to 14 counties that are most simi-
lar to Somalia (Mombasa, Kwale, Kilifi, Tana River, Lamu, 
Taita Taveta, Marsabit, Isiolo, Meru, Tharaka Nithi, 

Fig. 7 Examples of a smoothed population surfaces (b) and primary uniform grid sampling units (3 × 3 km) (c) after applying the quadtree 
algorithm

Table 2 Population by  age and  gender based on  Somalia 
High frequency surveys in 2017/2018

Female (%) Male (%) Total (%)

0–14 years 23.67 25.37 49.05

15–34 years 16.91 13.18 30.09

35–64 years 8.47 10.91 19.38

65+ years 0.58 0.90 1.48

Total 49.64 50.36 100.00
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Embu, Kitui, Machakos, and Makueni). This subsample 
includes 6312 observations in 688 unique clusters, with 
an average cluster size of 9.2. The Somalia survey has 
6092 observations in 413 unique clusters, with an average 
cluster size of 14.8. The weight variation produced in the 
final sampling weights for the Somalia survey is extreme, 
with the highest weight being more than 85,000 times 
larger than the smallest weight, compared with 423 times 
in the KIHBS. This finding exists despite the fact that 
the KIHBS itself is considered to have high variation—
the similarly sample sized 2018 Sierra Leone Integrated 
Household Survey (SLIHS) has a difference in weight 
values of only 23 times. The normalized variance of the 

sampling weights in Somalia is 6482, compared with 431 
in the KIHBS and 68 in the SLIHS.

The high variance in the weights reduces the precision 
of the estimates. This concept can be illustrated by the 
design effect, which measures the “penalty” paid by using 
a complex sample design over a simple random sample. 
The design effect for a key variable of interest, per capita 
household expenditure, in the Somalia survey is 5.5 com-
pared to 4.6 in the KIHBS subsample. This difference, 
however, is partially attributable to the larger cluster 
sizes in the Somalia survey, which lead to higher design 
effects. To isolate the impact of the unequal weights, we 
compare only that component of the design effects [55]. 

Fig. 8 Population homogeneity of the output sampling units within the 18 pre‑war regions produced by quadtree and uniform grid cell (UGC) 
1 × 1 km and 3 × 3 km approaches a, e quadtree regional scale standard deviation (std), b UGC 1 × 1 km 18 pre‑war regional scale standard 
deviation, c, g quadtree 18 pre‑war regional scale coefficient of variation, d UGC 1 × 1 km 18 pre‑war regional scale coefficient of variation, f UGC 
3 × 3 km 18 pre‑war regional scale standard deviation, h UGC 3 × 3 km 18 pre‑war regional scale coefficient of variation



Page 12 of 16Qader et al. Int J Health Geogr           (2020) 19:10 

The unequal weight effect in the Somalia survey is 3.2 
compared with 2.1 on the KIHBS, which translates into 
confidence intervals that are more than 50% wider in the 
Somalia design compared to a more traditional approach. 
It may be possible to some extent to mitigate this issue by 
windsorizing the sampling weights, but inefficiencies will 
likely remain.

Discussion
We have described the first usage of a quadtree algorithm 
approach to derive a population sampling frame from 
gridded population data. Prior studies have noted the 
importance of the quadtree algorithm for various pur-
poses such as spatial data dimension reduction, computer 
vision and image segmentation [56, 57]. This approach 
can be used to generate a viable population sampling 
frame for any year where a high-resolution gridded 
population dataset is available. This is crucial in coun-
tries where population and national enumeration area 
boundaries are outdated, incomplete or unavailable (e.g. 
DR Congo, South Sudan, Nigeria, Iraq and Afghanistan). 
For instance, in Somalia, EAs are only available for urban 
areas which cover only ~ 1% of the country [7]. Therefore, 
sophisticated approaches are in need to fill this gap.

Previously, UGCs have been used to create the pop-
ulation sampling frame in order to select the PSUs. 
For instance [22], used first-stage sampling units with 
a resolution of 2700 × 2700 m. In some areas, these 
large cells may correspond with high-density popula-
tion areas which then need substantial time, cost and 
human resources to segment into manageable SSUs. For 
example, in the current example of the work presented 
here, a total population for a sample unit in Soma-
lia could reach up to 130,000 and 42,400 people using 

Fig. 9 Box plot of population size variations among sampling units in the 18 pre‑war regions using the uniform grid cell approach (UGC 3 × 3 k) 
and quadtree approaches. Within each box, horizontal black lines denote median values; boxes extend from the first quartile and third quartile of 
each group’s distribution of values; vertical extending lines denote adjacent values. Note that the value for the Banadir region was divided by 1000 
in both quadtree and UGC 3 × 3 km

Table 3 Household demographics and  socio-economic 
characteristics based on  Somalia High frequency surveys 
in 2017/2018

Population type Overall Urban Rural IDP Nomads

Household size (mean) 5.37 4.97 5.51 5.41 5.85

Household size (median) 5 5 5 5 6

Household head male 58% 49% 63% 46% 77%

Dependency ratio 1.30 1.09 1.51 1.40 1.42

Poverty rate (US$ 1.90 inter‑
national poverty line)

69% 64% 72% 76% 72%

Household head literate 77% 84% 68% 85% 67%

Improved water access 77% 84% 68% 85% 67%

Improved sanitation access 46% 70% 40% 51% 8%
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the UGC 3 × 3 km and 1 × 1 km approaches (Fig. 7). In 
other areas, the sampling units could be small with just 
a few households, increasing the number of clusters 
needed to reach the minimum sample size and making 
data collection more expensive. In addition, UGC with 
large areas in a dense population is not feasible for enu-
meration or monitoring. By contrast, using a quadtree 
approach enabled us to tune the population and area 
constraints based on our requirements, resulting in 
a user-friendly sampling frame with much-improved 
population homogeneity within the population sam-
pling units. The greater similarity of the cluster in terms 
of the population provides a more equal probability of 
selection, increasing the efficiency of the design and 
decreasing overall survey costs. This approach has also 
the advantage over other gridded population sampling 
approaches in which grid cells were selected with PPS 
then PSUs were “grown” by adding neighbouring grid 
cells after selection [11, 32] as our approach produces 
sampling units with preferable population size and area 
before carrying out the sample selection.

The quadtree algorithm relies on gridded population 
data to generate the population sampling frame as well as 
data on uncrossable boundaries and design stratifications 
(e.g. administrative boundaries, settlement type, agroeco-
logical zone, etc.). The quality of these source data will, 
therefore, have an impact on the quality of the gener-
ated population sampling frame. Of the available gridded 
population datasets, this work used the WorldPop layer 
due to its high resolution, accuracy, better spatial distri-
bution and robust modelling methodology compared to 
other available gridded population datasets [43]. How-
ever, using the projected population dataset based on the 
old census, limited coverage of some covariates used in 
the modelling to disaggregate the population, vast unset-
tled area with a non-zero probability of population and 
highly mobile Somali population mean that improve-
ments could be made to the underlying population data-
sets for Somalia. In addition, in the original WorldPop 
layer, the population values were not always distributed 
adequately within the settled areas. This could be due 
to the settlement growth or lack of quality in the input 
data. For instance, a village might have only a few pixels 
with a high population number creating a sharp contrast, 
although its coverage area is larger and the transition 
from sparse to dense population is more progressive. Our 
usage of a Gaussian smoothing kernel technique with 
a standard deviation of 500 m resulted in a more ade-
quately distributed population surrounding a high-den-
sity pixel while preserving close to the total population 
count in the area. For instance, applying the smooth-
ing technique on the population data has improved the 
homogeneity within the majority of the pre-war regions, 

particularly at the urban area of Banadir. However, this 
approach was not based on any additional data and other 
approaches could provide better population estimates. It 
is worth noting that WorldPop has released a new version 
of the population data on the global scale from 2000 to 
2020 in which random forest model and other new tech-
niques were incorporated resulted in much improvement 
in the previous concerns [12, 13, 58].

Outdated census data could lead to coverage errors in 
the sample frame. Although gridded population datasets 
can improve older census datasets by re-distributing pop-
ulation to areas of the new settlement, the sample frame 
may contain inaccuracies if the population distribution 
changed substantially since the last census due to urbani-
zation, differential urban/rural fertility and mortality 
rates, or displacement due to natural- and human-caused 
disasters. Areas with greater population growth will be 
under-represented in the sample weights. The WorldPop 
Landcover model is not as accurate as of the WorldPop 
Random Forrest model by assuming similar counts of 
people per pixel within each landcover type; thus, varia-
bility in the sample frame may have been improved using 
the Gaussian smoothing technique. Future application 
of the quadtree should adopt more recent high gridded 
population data [12].

A strength of this sampling approach was that the use 
of a probability-based household selection protocol (a) 
required only one visit to the field, (b) allowed accurate 
calculation of sampling probability weights, and (c) pre-
vented enumerators from having to make household 
selection decision in the field. In Somalia, armed con-
flict and frequent occurrence of droughts pose security 
risks for field staff [59]. To ensure the safety of field staff, 
our approach removed the requirement for a separate 
household mapping and listing activity before the selec-
tion of households and interviews. The creation of SSUs 
and counting of buildings provided a basis for the robust 
calculation of household sampling weights after the sur-
vey. Further, the random number generator on the tab-
let ensured that enumerators did not make decisions 
about the household selection in the field, and therefore 
minimized potential selection bias. Intentional or unin-
tentional selection bias is a major threat in survey proto-
cols such as a random walk or spin-the-pen which leaves 
household selection decisions with the enumerator in the 
field [60, 61].

Conclusion
Gridded population datasets are increasingly used to 
create a population sampling frame in the absence of 
census data. However, previously used approaches were 
limited in their ability to create sampling units of similar 
population size before sampling. We have introduced an 
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alternative method by using the quadtree algorithm for 
the first time to create sampling units of approximately 
equal population. The algorithm can derive the sampling 
units based on prior constraints such as population and 
area which is more cost and time-efficient compared to 
the UGC approaches. In addition, the algorithm creates 
the sampling units based on user requirements prior to 
the sample selection which solves the incorrect probabil-
ity of selection in growing the grid samples to a given size 
[32]. It considers the population distribution in creating 
the sampling units in rural and urban settings rather than 
creating uniform sampling units [22, 33]. Furthermore, 
it avoids creating complex and snaky shapes (always 
square). In terms of homogeneity, the standard deviation 
and coefficient of variation for the sampling units were 
produced by quadtree is much smaller than the UGC 
approaches. The method also does not need strong com-
putation power and minimal user interaction is required. 
Overall, the strategy has the potential to improve surveys 
in high-risk environments by reducing the number of 
field visits and potential use in wider contexts.
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