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Abstract 

Background Tick-borne encephalitis (TBE) is the most serious tick-borne viral disease in Europe. Identifying TBE risk 
areas can be difficult due to hyper focal circulation of the TBE virus (TBEV) between mammals and ticks. To better 
define TBE hazard risks and elucidate regional-specific environmental factors that drive TBEV circulation, we devel-
oped two machine-learning (ML) algorithms to predict the habitat suitability (maximum entropy), and occurrence 
of TBEV (extreme gradient boosting) within distinct European regions (Central Europe, Nordics, and Baltics) using local 
variables of climate, habitat, topography, and animal hosts and reservoirs.

Methods Geocoordinates that reported the detection of TBEV in ticks or rodents and anti-TBEV antibodies in rodent 
reservoirs in 2000 or later were extracted from published and grey literature. Region-specific ML models were defined 
via K-means clustering and trained according to the distribution of extracted geocoordinates relative to explanatory 
variables in each region. Final models excluded colinear variables and were evaluated for performance.

Results 521 coordinates (455 ticks; 66 rodent reservoirs) of TBEV occurrence (2000–2022) from 100 records were 
extracted for model development. The models had high performance across regions (AUC: 0.72–0.92). The strongest 
predictors of habitat suitability and TBEV occurrence in each region were associated with different variable categories: 
climate variables were the strongest predictors of habitat suitability in Central Europe; rodent reservoirs and elevation 
were strongest in the Nordics; and animal hosts and land cover contributed most to the Baltics. The models predicted 
several areas with few or zero reported TBE incidence as highly suitable (≥ 60%) TBEV habitats or increased probability 
(≥ 25%) of TBEV occurrence including western Norway coastlines, northern Denmark, northeastern Croatia, eastern 
France, and northern Italy, suggesting potential capacity for locally-acquired autochthonous TBEV infections or pos-
sible underreporting of TBE cases based on reported human surveillance data.

Conclusions This study shows how varying environmental factors drive the occurrence of TBEV within different 
European regions and identifies potential new risk areas for TBE. Importantly, we demonstrate the utility of ML models 
to generate reliable insights into TBE hazard risks when trained with sufficient explanatory variables and to provide 
high resolution and harmonized risk maps for public use.
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Background
Tick-borne encephalitis (TBE) is a major public health 
problem and the most serious tick-borne viral disease 
in Europe and Asia. Over the past decade, notification 
rates of TBE cases have increased throughout Europe 
including countries in the Nordics (Norway, Sweden, 
and Finland), Central Europe (Germany, Czech Republic, 
Austria) and the Baltics (Lithuania and Latvia) [1]. TBE is 
caused by infection with the TBE virus (TBEV), a single-
stranded RNA virus belonging to the genus Orthoflavi-
virus, and most often spread via the bite of an infected 
tick but occasionally through the consumption of con-
taminated dairy products [2]. Two of the five confirmed 
TBEV subtypes are endemic in Europe and cause human 
disease: (i) the European subtype (TBEV-Eu) which is 
broadly distributed across the continent and transmitted 
mostly by Ixodes ricinus and Dermacentor reticulatus; 
and (ii) the Siberian subtype (TBEV-Si) which is endemic 
in more northern latitudes in eastern Europe and Asia 
transmitted predominantly by Ixodes persulcatus [3].

Circulation of TBEV in nature occurs between vector 
ticks and rodent reservoirs in hyper-localized, heteroge-
neous areas known as ‘foci’ which are determined by the 
interplay of environmental factors of climate, ecology, 
density of infected host-seeking ticks, and abundance of 
mammalian tick hosts and reservoirs [4]. Due to their 
strict focality in the environment, sometimes less than 
100  m2, defining TBE risk areas is challenging [5]. Usually, 
microfoci are identified based on TBE patients’ memory 
indicating potential locations in which the infected tick 
bites occurred [5–7]. This approach, however, is subject 
to substantial recall bias. Active tick surveillance via tick 
dragging is labor intensive and typically requires the col-
lection of thousands of tick specimens to detect new 
TBEV foci due to the low prevalence of TBEV infection 
in host-seeking ticks [8, 9]. Sentinel surveillance of anti-
TBEV antibodies or viral detection of RNA in rodent 
TBEV reservoirs can be more useful to define TBE risk 
areas by indicating current or recent TBEV transmission 
from infected ticks and identifying potential foci [10–12].

Robust statistical tools like machine-learning (ML) 
models are increasingly utilized to predict distributions 
of vector ticks and estimate spatiotemporal risk of TBE 
by linking their magnitude of occurrence to local envi-
ronmental features of climate, habitat, animal hosts and 
reservoirs, and ecologies [13–16]. Therefore, ML model 
studies measuring associations between the environment 
and TBEV occurrence can help define TBE hazard risks 
by identifying suitable habitat areas and estimating the 
probability of local TBEV circulation [6, 7, 17–20]. Previ-
ous ML models, however, often lack regional specificity 
or do not include all relevant explanatory variables which 
limits data reliability and generalizability. For example, 

most predictive models are geographically broad in scope 
(e.g., European-wide) or fail to incorporate the distribu-
tion or abundance of animal hosts or rodent TBEV reser-
voirs as explanatory variables, though these are required 
for foci establishment and local circulation of the TBEV 
between ticks and animals [21, 22].

The primary objective of this study was two-fold. First, 
we sought to identify the environmental factors associ-
ated with habitat suitability and occurrence of TBEV 
across Europe via the development of predictive mod-
els within three geographically distinct regions: Central 
Europe, Nordics, and Baltics. We achieved this by build-
ing region-specific, novel ML models that utilize different 
approaches incorporating comprehensive and epidemio-
logically relevant explanatory variables of TBE zoonosis 
including features of climate, habitat, vector ticks, and 
animal hosts and TBEV reservoirs. We then leveraged 
these ML models to predict the distribution of suitable 
habitat areas and local probability of TBEV occurrence to 
illustrate high risk areas across varying population densi-
ties across the three regions.

Methods
Identification of source data and target territory
The target territory for source data and ML model devel-
opment included the following countries: Austria, Bel-
gium, Croatia, Czech Republic, Denmark, England, 
Estonia, Finland, France, Germany, Italy, Latvia, Lithu-
ania, Netherlands, Norway, Poland, Scotland, Slovakia, 
Slovenia, Sweden, and Switzerland. Source records with 
coordinate locations of reported TBEV occurrence in 
the defined countries were retrieved from PubMed, grey 
literature (congress abstracts and unpublished data) in 
August 2023 and April 2024. Other records were identi-
fied during full-text reviews of retrieved studies that cited 
additional studies in the bibliography sections which we 
termed as “snowballing”. Literature searches of published 
records between 01 January 2000 and 28 May 2024 were 
guided by the Preferred Reporting Items for Systematic 
Review and Meta-Analyses Explanatory variables [23] 
using the following search terms and their analogues 
in various combinations in any language: tick-borne 
encephalitis, TBE, TBEV, foci, seroprevalence, antibody, 
Ixodes, ricinus, persulcatus, Dermacentor, reticulatus, 
Europe, Scandinavia, Baltics, Balkans, and target territory 
countries. Titles and abstracts from retrieved records 
were screened by two researchers to assess for eligibility 
and model inclusion. Original studies, case reports, nar-
rative and comprehensive reviews, and systematic litera-
ture review articles were included for screening (Fig. 1). 
Additionally, five publications were used to assess the 
comprehensiveness and confirm the spatial specificity of 
extracted geocoordinates [6, 7, 20, 24, 25].
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Inclusion criteria and extraction of TBEV occurrence 
geocoordinates
Geocoordinates of TBEV occurrence were grouped 
according to the biological categories involved in TBE 
zoonosis: “vector ticks”, “rodent reservoirs”, and “animal 
hosts.” Coordinates were considered a location of “TBEV 
occurrence” and extracted for analysis if the original 
records detected TBEV RNA or anti-TBEV IgM/IgM 
antibodies in at least one individual vector tick, rodent 
reservoir, or animal host within the target territory coun-
tries via (i) detection of TBEV RNA in nymph or adult 
competent TBEV vector tick or competent TBEV rodent 
reservoir by molecular sequencing methods of PCR, RT-
PCR, nested RT-PCR, quantitative PCR, pyrosequencing, 
or in vivo cellular culture; or (ii) serological detection of 
anti-TBEV IgM or IgG antibodies in a rodent reservoir or 
large mammalian tick-feeding host via ELISA, neutraliza-
tion test, hemagglutinin inhibition, indirect fluorescent 
antibodies, or cellular culture. To account for potential 

short-term stability and possible disappearance for some 
coordinate locations of TBEV occurrence, sites identified 
prior to the year 2000 were excluded from analysis. Ticks 
and animals collected by either active or passive surveil-
lance methods including tick dragging of host-seeking 
ticks, field trapping of rodent reservoirs and feeding ticks, 
or citizen science and community-associated data (hunt-
ing, veterinary clinics, etc.) were included for extraction.

Vector tick species included were Ixodes ricinus, Ixodes 
persulcatus, and Dermacentor reticulatus. Competent 
rodent reservoirs of TBEV included the yellow-necked 
mouse (Apodemus flavicollis), wood mouse (Apodemus 
sylvaticus), bank vole (Myodes glareolus), and European 
pine vole (Microtus subterraneus). Records that reported 
non-specific mammalian “rodents” or “Ixodes spp.” were 
also included. Animal hosts were mostly larger mamma-
lian hosts that are utilized for tick feeding and reproduc-
tion and categorized as either “domestic hosts” or “wild 
hosts.” Domestic hosts included dogs (Canis familiaris) 

Fig. 1 Flow diagram of source records with coordinate locations with tick-borne encephalitis virus (TBEV) occurrence included for extraction 
and modeling
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and agricultural animals such as cow and cattle species 
(Bos spp.), sheep (Ovis aries), goat (Capra aegagrus hir-
cus), horse (Equus ferus caballus), pig (Sus domesticus), 
alpaca (Vicugna pacos); localities with documented 
TBEV-contaminated dairy products (e.g., cow milk) 
were also considered. Wild hosts were defined as species 
within the family Cervidae including roe deer (Capreolus 
capreolus), red deer (Cervus elaphus), fallow deer (Dama 
dama), reindeer (Rangifer tarandus), moose (Alces alces), 
or any non-specified “deer” species, species within the 
family Bovidae including mouflon (Ovus gmelini) and 
European bison (Bison bonasus), and other wild animals 
including ibex (Capra ibex), red fox (Vulpes vulpes), wild 
boar (Sus scrofa), and any wild monkey or non-migratory 
bird species.

Geocoordinates were extracted and recorded in a 
Microsoft Excel database via the following methods:

1. Locations with associated decimal latitude and longi-
tude coordinates were extracted directly as reported 
in the original records. Coordinates reported as 
degrees, minutes, seconds (DMS), Universal Trans-
verse Mercator (UTM), or other non-typical coordi-
nate systems were standardized to decimal latitude 
and longitude coordinates.

2. TBEV occurrence site(s) that did not provide geoco-
ordinates and were described solely by location (e.g., 
address) or subdistrict administrative region had the 
centroid geocoordinates of the highest resolution 
administrative region extracted.

3. Among records that illustrated the spatial distribu-
tion of coordinate locations with TBEV occurrence 
but provided no additional geocoordinate specific-
ity, geocoordinates were subjectively determined by 
scaling Google maps to the corresponding area and 
selecting the closest locality on the map.

The following data associated with the geocoordinates 
were also extracted: record source, publication year, col-
lection site (country, state, NUTS-3 district), collection 
years (range), collection method, detection method, sam-
ple size of collected and tested organisms, number of 
organisms with TBEV detected, and mean infection rate. 
The entire master datafile of TBEV occurrence coordi-
nates used in the study is provided (File S1).

Explanatory variables
We used an epidemiological-relevant comprehensive set 
of 28 environmental features important for the enzo-
otic circulation of TBEV as explanatory covariates for 
ML model development based on previously published 
ecological observations [3, 4, 22, 26–28] and modeling 
approaches [1, 6, 7, 15–18, 20, 29–32] for TBE. The 28 

individual explanatory covariates were grouped accord-
ing to the environmental categories of “climate” (n = 19), 
“topography” (elevation and land cover type), compe-
tent rodent “reservoir” species of TBEV (n = 4), and 
large mammalian “host” species ideal for tick feeding 
and reproduction (n = 3) (Table  1). The geospatial data 
associated for all 28 explanatory variables were extracted 
across the entire target territory with the addition of 
Luxembourg to build a comprehensive explanatory vari-
able dataset for ML model development. Daily records 
of variables for climate and weather were obtained from 
the Copernicus E-Obs dataset (https:// surfo bs. clima te. 
coper nicus. eu/ surfo bs. php) and summarized at monthly, 
seasonal, or yearly intervals over the temporal period 
(2000–2022) at 0.1-degree grids (accessed 12 October 
2023) [33]. Gridded land cover data at a spatial resolu-
tion of 100  m were obtained from the European Envi-
ronmental Agency (EEA) (https:// www. eea. europa. eu/) 
dataset classified under the EUNIS Level 2 system last 
updated in 2018 (v3.1) (accessed 31 March 2024) [34]. 
Data for “Elevation” were obtained from the EuroDEM 
dataset (https:// www. mapsf oreur ope. org/ datas ets/ euro- 
dem) updated in 2023 at 2 arcsecond resolution (accessed 
12 October 2023) [35]. Explanatory variables for the 
distribution for red deer (C. elaphus) and roe deer (C. 
capreolus) animal hosts were obtained from high reso-
lution maps of predicted abundance (0–1) at a spatial 
scale of < 0.01 degrees from published literature [36, 37]. 
Explanatory variables of the distributions of the animal 
host fallow deer (D. dama) and TBEV rodent reservoirs 
of yellow-necked mouse (A. flavicollis), European pine 
vole (A. sylvaticus), bank vole (M. glareolus), and wood 
mouse (M. subterraneus) were based on each species’ 
reported historical spatial occurrence data beginning in 
the year 1600 through September 2023, publicly available 
from the Global Biodiversity Information Facility (GBIF) 
(https:// www. gbif. org) [38] to calculate their respec-
tive relative habitat suitability (0–1) at a 3 km resolution 
across the target territory and provided in March 2024 
(courtesy of Dr. Agustin Estrada-Pena). Further details 
and definitions on all explanatory variables used for mod-
eling are provided (File S2).

Data structure and processing
Extracted geocoordinates were prepared and mapped 
to their respective NUTS-3 administrative region. Geo-
coordinates located in offshore locations (sea, ocean, or 
otherwise not on land) were verified for accuracy accord-
ing to the reported coordinates in the original records. If 
these coordinates were still considered to be reported in 
error, the coordinates were mapped to the nearest land 
coordinate in the collection country. Rarely, nonsensical 
or otherwise unreliable geocoordinates were discarded. 

https://surfobs.climate.copernicus.eu/surfobs.php
https://surfobs.climate.copernicus.eu/surfobs.php
https://www.eea.europa.eu/
https://www.mapsforeurope.org/datasets/euro-dem
https://www.mapsforeurope.org/datasets/euro-dem
https://www.gbif.org
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Geocoordinates were classified as either present or 
absent (e.g., geocoordinates with one TBEV-infected tick 
out of 100 sampled specimens and geocoordinates with 
99 TBEV-infected ticks out of 100 sampled specimens 
were both counted and contributed equally to the model 
outputs). Spatial raster files corresponding to the explan-
atory variables were harmonized using QGIS software 
(version 3.32.1-Lima) at the 0.005-degree resolution to 
create a composite raster image. Variables at lower reso-
lutions were joined to the nearest raster geocoordinate 
of the composite raster image to create a final explana-
tory variable predictor spatial dataset at 0.005-degrees 
resolution. Missing values were only present for lower 
resolution explanatory variable data, which was resolved 
by matching data from the nearest coordinate. TBEV 
occurrence associated with vector ticks and rodent res-
ervoirs exclusively were used for model training due to 
increased spatial precision of potential microfoci. TBEV 
occurrence associated with animal hosts were excluded 
due to surveillance bias of domestic host species and 
poor spatial specificity among wild host collection sites. 

Geocoordinates were de-duplicated to eliminate multiple 
collection records at each coordinate location and mini-
mize model bias.

A modified K-means algorithm was implemented 
across the target territory using the distribution of the 
entire dataset of extracted geocoordinates of TBEV 
occurrence to develop separate ML models for three 
defined regions. The rationale for this procedure is due 
to the hypothesis that the eco-epidemiology of TBE is 
region-specific and has different associations with eco-
logical, climatological, and habitat-related features in the 
environment across regions. The K-means clustered algo-
rithm considered the latitude and longitude coordinates 
of the TBEV occurrence and whether the coordinates 
were located north or south of the Baltic Sea to ensure 
resulting clusters did not cross major bodies of water 
(remote islands and the United Kingdom (UK) were 
excluded from this rule). TBEV occurrence and explana-
tory variables were split according to the defined geo-
graphic clusters, aggregated, and matched to the nearest 
explanatory variable datum within each defined region to 

Table 1 Variables and data sources included for modeling

GBIF  Global Biodiversity Information Facility
a Data provided March 2024

Model component (n) Variable (n) Spatial resolution Data range (years) Interval Source(s)

Training dataset (1) Geocoordinates of TBEV 
occurrence (1)

GPS coordinates 2000–2022 Annual Literature search; per-
sonal communication; 
congress abstracts

Explanatory variables 
(28)

Climate; weather (19) 0.1° 2000–2022 Daily Copernicus E-Obs Data-
set [33]

Relative habitat suit-
ability of rodent TBEV 
reservoir species: 
Apodemus flavicollis; 
Myodes glareolus (2)a

 ~ 55 m 1736-September 2023 Annual reported occur-
rences

GBIF; https:// www. gbif. 
org/ speci es/ 24377 56; 
https:// www. gbif. org/ 
speci es/ 57067 64 [38]

Relative habitat suitabil-
ity: Apodemus sylvaticus 
(1)a

 ~ 55 m 1600-September 2023 Annual reported occur-
rences

GBIF; https:// www. gbif. 
org/ speci es/ 24377 60 [38]

Relative habitat suit-
ability: Microtus subter-
raneus (1)a

 ~ 55 m 1838-September 2023 Annual reported occur-
rences

GBIF; https:// www. gbif. 
org/ speci es/ 24386 60 [38]

Relative habitat suitabil-
ity of fallow deer: Dama 
dama (1)a

 ~ 55 m 1575-September 2023 Annual reported occur-
rences

GBIF; https:// www. gbif. 
org/ speci es/ 52201 36 [38]

Predicted distribu-
tion and abundance: 
Capreolus capreolus (1)

 < 0.01° Uploaded April 2014 Static Alexander et al., 2014 [37]

Predicted distribution 
and abundance: Cervus 
elaphus (1)

 < 0.01° Uploaded April 2014 Static Wint et al., 2014 [36]

Elevation (1) 2 arcseconds (60 m) Updated 2023 Static EuroDEM [35]

Habitat and land cover 
types (1)

100 m 1 Jan 2012 – 31 Dec 
2012

Static European Environmen-
tal Agency Land cover 
(EUNIS Level 2 Classifica-
tion—v3.1 2018 [34]

https://www.gbif.org/species/2437756
https://www.gbif.org/species/2437756
https://www.gbif.org/species/5706764
https://www.gbif.org/species/5706764
https://www.gbif.org/species/2437760
https://www.gbif.org/species/2437760
https://www.gbif.org/species/2438660
https://www.gbif.org/species/2438660
https://www.gbif.org/species/5220136
https://www.gbif.org/species/5220136
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construct separate regional datasets for model training 
(“training dataset”).

Machine‑learning model algorithm approaches
Three ML algorithm approaches were selected to create 
models of TBEV “risk” based on their reliability and util-
ity to measure environmental associations with TBEV 
occurrence: Maximum entropy (Maxent), regularized 
logistic regression (RLR), and extreme gradient boosting 
(XGBoost). Maxent was chosen since it does not require 
absence (negative) geospatial data and due to its demon-
strated utility for ecological niche modeling when pre-
dicting spatial distribution and occurrence [39]. In this 
study, we refer to the Maxent model outputs as “habitat 
suitability” which compares the predicted spatial suit-
ability of TBEV occurrence relative to other areas within 
the model region. While linear models need non-linear 
relationships and variable-outcome interactions implic-
itly defined, we developed extreme gradient boosted 
decision tree (XGBoost) models that can implicitly han-
dle non-linear and multifactorial relationships between 
explanatory variables and target outcomes [40]. XGBoost 
models are extremely powerful and can provide highly 
accurate predictive outputs when tuned and validated 
appropriately. Predictive outputs from XGBoost models 
were defined as “probability of TBEV occurrence” in each 
region.

Model‑specific input data processing
Due to the lack of available absence data of TBEV foci 
localities, we incorporated 10,000 randomly distrib-
uted “pseudoabsence” points for the XGBoost and RLR 
models across the entire study area proportional to each 
cluster regions’ landmass (Central Europe = 4972; Nor-
dics = 3868; Baltics = 1160). Pseudoabsence points were 
incorporated to create a meaningful contrast with the 
extracted geospatial TBEV occurrence points, enabling 
the model to better distinguish areas where the species 
is likely to occur from areas where it is absent [41]. This 
approach enhances the models’ ability to better capture 
the environmental conditions associated with the species’ 
distribution ultimately increasing the models’ perfor-
mance. Furthermore, this method aligns with established 
practices in species distribution modeling, as several 
studies have successfully utilized pseudoabsence points 
to achieve robust results [18, 20]. Absent land cover types 
were systematically sampled and incorporated as pseudo-
absence points into the training datasets. One hot encod-
ing was used to extract each categorical land cover type 
(n = 45) into separate binary explanatory variables. Both 
the RLR and XGBoost algorithms used the ‘saga’ solver 
with a maximum iteration of 10,000 with L1 regulariza-
tion to reduce overfitting using the scikit-learn package 

in Python (v. 1.4.2). With the Maxent models, the num-
ber of background points used for each region was the 
same as the number of pseudoabsence points for the 
XGBoost and regularized logistic regression models. 
The Maxent model was developed using a regularization 
value = 2 with 1000 maximum iterations using the Max-
ent software package (version 3.4.4).

Machine‑learning model training and feature selection
Ultimately, with three modeling approaches across three 
European regions, nine models were developed in total. 
To improve interpretability of the models and reduce 
multicollinearity bias among explanatory variables, fea-
ture selection was implemented using Pearson’s correla-
tion coefficient (R-value). We implemented a correlation 
coefficient threshold of R = 0.95 and a statistical signifi-
cance threshold of p = 0.01 to identify correlated pair-
wise explanatory variables. The ML models within each 
region were then trained and tuned to account for poten-
tial overfitting using a grid search approach to find opti-
mal hyperparameters. The list of explanatory variables 
excluded from the final algorithms in each region is pro-
vided (File S3).

Feature importance scores for each respective model 
were obtained. Due to the differences between the 
XGBoost, RLR, and Maxent models, we used differ-
ent approaches to measure variable importance for each 
model type. The decision to use different importance 
metrics for each model stemmed from the structural 
difference between them: our XGBoost is a tree-based 
model, RLR is a generalized linear model, and Maxent 
is an entropy-based model. For the Maxent models, we 
used Permutation Importance, which measures vari-
able importance by assessing the percent drop in AUC 
when randomly permuting the values of a given predic-
tor. For the XGBoost models, we used the traditional fea-
ture importance metric, calculated as the average gain of 
splits in a tree using a given feature. For the RLR models, 
since training data was normalized, we used the absolute 
value of the traditional linear coefficient values to deter-
mine feature importance.

Among the pairwise variable associations that met the 
defined R-value threshold for collinearity, the explana-
tory variable that possessed the lower permutation 
importance or feature score was dropped from each 
model. Afterwards, final models were developed using 
the remaining explanatory variables within each region 
to obtain output predictions and feature importance (%). 
To compare the importance of habitat land cover types 
between the XGBoost or RLR models and the Maxent 
models within each region, the variable scores of the one 
hot encoded binary variables for all land cover types in 
the XGBoost and regularized logistic regression models 
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were aggregated into a single "land cover" variable score 
by computing the weighted mean of their scores, with 
weights proportional to the frequency of each land cover 
type in the region (e.g., training dataset). Feature impor-
tance of the explanatory variables within the categories 
for climate, rodent reservoirs, and animal hosts were 
aggregated to provide insights into the proportional (%) 
model contributions of each category across regions.

ML model output predictions and performance evaluation
The spatial distribution of Point predictions (0–100) 
for habitat suitability (Maxent) and probability of 
TBEV occurrence (XGBoost and RLR) were output at 
0.01-degree resolution scale and 0.005-degree resolution 
scale, respectively. Final validation of each model was 
performed using fivefold cross-validation by NUTS-3 
districts in each region to measure model Area Under 
the Curve (AUC) and Receiver Operating Characteristic 
(ROC) results and assess model evaluation and perfor-
mance. The 5 folds were constructed based on the clus-
tered geographic regions (Central Europe, Nordics, and 
Baltics) and split according to their respective NUTS-3 
districts. For each fold of the fivefold cross-validation 
process, 80% of the NUTS-3 districts were randomly 
selected within each region/model for training and the 
remaining 20% of the NUTS-3 districts were used as a 
test set to measure the regions’ model accuracy. This pro-
cedure was repeated another four instances (five total) for 
each fold to ensure the entire dataset across all NUTS-3 
districts had been used for both model training and test-
ing without artificially shrinking the training dataset. The 
final AUC scores were computed using aggregated pre-
dictions across the five test sets and evaluated for model 
selection. Point predictions were further aggregated 
up to their respective NUTS-3 levels to produce mean 
prediction and probability of TBEV occurrence in each 
NUTS-3 district for further visualization and analytical 
purposes. All programming language and resulting code 
are available for download. A schematic describing the 

procedure for data mining and extraction, aggregation 
and cleaning of explanatory variables, development of the 
ML algorithms, and evaluation of model performances is 
provided (Fig. 2).

Association between human population density 
and predicted risk
Model results were used to further investigate the rela-
tionship between population density and predicted prob-
ability of TBEV occurrence (XGBoost) among NUTS-3 
districts in the target territory. Data for the total popula-
tion and landmass were gathered from Eurostat database 
(2024) (https:// ec. europa. eu/ euros tat/ en/) (accessed 02 
July 2024) [42] to calculate population density  (km2) at 
the NUTS-3 level for all countries in the target territory 
(2024) and the UK (2019). Missing NUTS-3 region data 
for the UK were supplemented with population density 
data from the Office of National Statistics (ONS) in 2024 
(https:// www. ons. gov. uk/) (accessed 02 July 2024) [43]. 
Descriptive summaries of the absolute and proportion of 
NUTS-3 districts with population densities of < 300/km2, 
300–1500/km2, and > 1500/km2 relative to thresholds 
for predicted probabilities of TBEV occurrence of < 1%, 
1–5%, 5–15%, and > 15% were calculated and visualized 
for each region.

Results
Summary of TBEV foci data and model regions
Among 2233 titles and abstracts screened, 400 (17.9%) 
records (342 from online database search and 58 from 
“snowballing”) were full-text reviewed (Fig.  1). In total, 
141 records were included (File S4) for the extrac-
tion of 899 coordinate locations with reported TBEV 
occurrence (2000–2022) (Table  2; Fig.  1). Of the entire 
extracted dataset, 343 (38%) coordinates were associ-
ated with domestic host species (214) and wild animal 
hosts (129) from 41 records and excluded from modeling 
resulting in a total of 100 records included for analyses 
(Table  2; Fig.  1). After de-duplication of co-localized 

Table 2 Summary of coordinate locations with reported occurrence of tick-borne encephalitis virus (TBEV) included in final models, 
by region (2000–2022)

a Total number of coordinates for TBEV occurrence extracted for all ticks and animals (domestic hosts, wild hosts, and rodent reservoirs)
b Coordinates of TBEV occurrence for model training included ticks and rodent reservoirs, exclusively. Locations with TBEV occurrence were represented by one set of 
coordinates only

Cluster region model Total 
coordinates 
 extracteda

No. coordinates for 
modeling (source 
records)b

Ixodes ricinus Ixodes 
persulcatus

Ixodes spp. Dermacentor 
reticulatus

Rodent 
reservoirs

Range 
years 
collection

Central Europe 565 294 (55) 248 0 1 1 44 2000–2022

Nordics 166 100 (24) 68 23 7 0 2 2003–2021

Baltics 168 127 (21) 49 0 48 10 20 2000–2021

Total 899 521 (100) 365 23 56 11 66 2000–2022

https://ec.europa.eu/eurostat/en/
https://www.ons.gov.uk/
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geocoordinates, the final models were trained on a 
total of 521 coordinate locations (training dataset) of 
TBEV occurrence from vector tick species (455; 87.3%) 
and rodent reservoirs (66; 12.7%) (Table  2; Fig.  1). The 

distribution of all 899 extracted geocoordinates TBEV 
occurrence is illustrated (Figure S1) and summarized by 
country (File S5).

Fig. 2 Diagram of study procedures for modeling predicted habitat suitability and occurrence of tick-borne encephalitis virus (TBEV) via maximum 
entropy (Maxent) and extreme gradient boosting (XGBoost) machine-learning algorithms
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A spatial clustering analysis to define the geographic 
scope for model training revealed three geographic clus-
ters encompassing countries in the regions of “Central 
Europe”, the “Nordics”, and “Baltics” (Fig. 3A). The “Cen-
tral Europe” regional model covered the UK, France, 
Belgium, the Netherlands, Denmark, Germany, Luxem-
bourg, Switzerland, most of Czech Republic and Slova-
kia, and western Poland; the “Nordics” region included 
Norway, Sweden, and Finland; and the “Baltics” model 
ranged from central and eastern Poland, the eastern-
most part of Czech Republic, northeastern Slovakia, 
and the three Baltic states of Lithuania, Latvia, and Esto-
nia. More than half (n = 294; 56.4%) of all coordinates 
of TBEV occurrence were distributed within Central 
Europe (2000–2022), 127 (24.4%) were within the Bal-
tics (2000–2021), and 100 (19.2%) were in the Nordics 
(2003–2021) (Fig. 3A; Table 2). Overall, 455 (87.3%) coor-
dinates were identified by the collection and detection of 
TBEV-infected vector ticks, mostly in I. ricinus (n = 365) 
followed by Ixodes spp. (n = 56), I. persulcatus (n = 23) 
and D. reticulatus (n = 11) and 66 (12.7%) coordinates 
were identified by the detection of TBEV RNA or anti-
TBEV antibodies in rodent reservoirs (Table 2). Based on 
land cover type, more coordinates occurred in coniferous 
woodland (n = 123; 23.6%) and broadleaved deciduous 
woodland habitats (n = 96; 18.4%) than any other land 
cover types, followed closely by arable land and gardens 
(n = 84; 16.1%), buildings of cities, towns, and villages 
(n = 66; 12.7%), and mesic grasslands (n = 61; 11.7%) 
(Fig. 3C; File S6). By region, coordinates of TBEV occur-
rence from the Baltics were more equally distributed 
across vector tick species and rodent reservoirs com-
pared to Central Europe and Nordics regions (Fig.  3B). 
Conversely, coordinates of TBEV occurrence were dis-
tributed across more land cover types in Central Europe 
relative to the Nordics and Baltics (Fig. 3C).

Evaluation of algorithm performance and feature selection
The Maxent algorithms were superior in Central Europe 
(AUC: 0.885) and Baltics (AUC: 0.774) while the XGBoost 
algorithm was the best performer in the Nordics (AUC: 
0.918) (File S7). The RLR models had the lowest perfor-
mance characteristics across all regions and models and 
were excluded for further analyses (File S7). Ultimately, 
both the Maxent and XGBoost models were selected for 
predictive outputs in each region. Four to nine explana-
tory variables were excluded from the regions’ final mod-
els based on multicollinearity assessments (File S3). To 
illustrate regional disparities among individual predictor 
features across the modeled regions, the spatial distribu-
tions and magnitudes of a subset of explanatory variables 
corresponding to categories of topography (elevation; 
Fig. 4A), climate (mean daily temperature in driest annual 

quarter, mean ratio days per month > 5  °C, mean annual 
“wet” days; Fig. 4B–D), hosts (D. dama; Fig. 4E), and res-
ervoirs (A. flavicollis; Fig. 4F) are provided.

Environmental variable associations with habitat 
suitability and occurrence of TBEV
The predicted relative habitat suitability (Maxent) for 
TBEV was broadly driven by different category envi-
ronmental variables, although some similarities were 
observed. Climate variables contributed (permutation 
importance) the most (72.2%) for habitat suitability in 
Central Europe compared to contributing less than half 
(43.6%) and less than one-third (33.2%) in the Nordics 
and Baltics regions, respectively (Fig.  5A). Variables of 
animal hosts contributed the most (27.9%) to habitat 
suitability in the Baltics and reservoirs (20%) and topog-
raphy (26.2%) were the strongest in the Nordics. Overall, 
model contributions from reservoirs (14.1%), topogra-
phy (10.9%), andhosts (2.9%) were the lowest in Central 
Europe. Similarly, with the Maxent models, variables of 
climate had the largest contributions (feature scores) to 
the XGBoost models to predict the absolute probability 
of TBEV occurrence across the regions but the propor-
tional contributions across categories were mostly simi-
lar (Fig. 5B). Overall, climate variables scored the highest 
in the XGBoost model for Central Europe (66.3%) com-
pared to the Nordics (53.5%) and Baltics (58.7%) models. 
Conversely, contributions from variables of topography 
(13.6%), hosts (14.8%), and reservoirs (18.1%) were the 
highest in the Nordics.

Model contributions respective to each individual 
predictor were often similar between the Maxent and 
XGBoost models within each region but some discrep-
ancies were observed (Fig. 6). In Central Europe, “mean 
monthly ratio days > 5  °C” was the strongest predic-
tor for habitat suitability (30.3%) but excluded from the 
XGBoost model, while “mean June temperature” was the 
top-ranked predictor in the XGBoost model (7%) and 
excluded from the Maxent model. For the Baltics, the 
fallow deer abundance was the top predictor for rela-
tive habitat suitability (21.3%) while roe deer abundance 
was the top driver for the predicted absolute probability 
of TBEV occurrence (5.9%). Elevation was ranked in the 
top-three for all regional habitat suitability models and 
the top-ranked predictor in the Nordics for both habi-
tat suitability (23.5%) and absolute probability of TBEV 
occurrence (10.2%). Land cover was the second-ranked 
variable for both Maxent (11.3%) and XGBoost models 
(5.6%) in the Baltics. Variables for reservoirs contributed 
the most in the Nordics for both models but were the 
weakest category of predictors overall across all regions. 
The three variables of relative humidity were among the 
lowest ranked predictors across all regions and models.
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Although variable contributions from the explana-
tory variable categories were broadly similar across the 
XGBoost modeled regions, different individual predic-
tors within each category were responsible for their 
respective contributions in each region (Fig.  6A, C). 
Among climate variables, “mean June temperature” was 
the strongest predictor in the overall XGBoost model 
in Central Europe (7%) and the fourth-ranked predictor 
(5%%) in the Baltics models but was excluded from the 
Nordics. Further, “mean spring ‘warm’ days” was the sec-
ond strongest individual predictor in the Central Europe 
but was excluded from the XGBoost models for the other 
regions (Fig. 6A). Conversely, “mean monthly minimum 
temperature” was the second strongest predictor in the 
Nordics (7%) but was the 13th-ranked variable for both 
other regions and “mean monthly ratio days > 5  °C” 
was the top predictor of climate in the Baltics (5.1%) 
but excluded from the other regions’ XGBoost models 
(Fig.  6A, C). Additionally, the top ranked animal host 
predictor for each region was a different species: roe deer 
abundance was top-ranked animal host variable in the 
Baltics while fallow deer abundance (5.8%) and red deer 
abundance (4.6%) were the highest-ranked animal host 
variables in Nordics (4th overall) and Central Europe (8th 
overall), respectively (Fig.  6C). The contributions from 
the category and individual explanatory variables in the 

Maxent and XGBoost models for each region are listed 
in Table S2.

Predicted habitat suitability and probability of TBEV 
occurrence
Spatial predictions for the relative habitat suitability 
(Fig.  7A-B) and absolute probability of TBEV occur-
rence (Fig.  7C-D) were generated at high-resolution 
(0.01 degree) and administrative NUTS-3 regions. For 
the Maxent models, 90% of the predictive outputs (0.01 
degree) were between 0 and 52.2% relative habitat suit-
ability, 95% of predictions between 0 and 68.2% rela-
tive habitat suitability, and 99% of predictions between 
0 and 92.0% relative habitat suitability (Fig.  7A). 
Areas with the highest predictions of habitat suitabil-
ity (≥ 60%) were southern Germany, northern regions 
of Switzerland, Italy, and Croatia, eastern Latvia, and 
several coastal regions of the Nordics including west-
ern and southern Norway, western Finland, and south-
ern Sweden (Fig.  7A-B). Other notable regions with 
increased (10–60%) habitat suitability for TBEV were 
eastern France, most of southern Sweden and Finland, 
some eastern regions of Scotland and England, and 
nearly all of Poland, Lithuania, and Estonia (Fig. 7A-B). 
For the XGBoost models, 90% of the predictive outputs 

Fig. 3 Locations with reported occurrence of tick-borne encephalitis virus (TBEV) in vector ticks and rodent reservoirs within European regions 
(2000–2022). Clustered regions for “Central Europe” (red), “Nordics” (blue), and “Baltics” (yellow) and their associated models are illustrated 
with coordinate locations of TBEV occurrence for the main TBEV vector tick species and rodent reservoirs (A). The proportion of TBEV occurrence 
locations associated with each of the vector tick species and rodent reservoirs (B) or land cover habitat types (C) by region are provided
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were between 0 and 10.1% absolute probability of 
TBEV occurrence, 95% of predictions falling between 0 
and 15.5%, and 99% of predictions were between 0 and 
29.5% (Fig.  7C). The areas with the highest predicted 
absolute probabilities of TBEV occurrence (≥ 25%) 
across the modeled territory included southern Ger-
many, most of Switzerland but especially concentrated 
in the northern regions, eastern Slovenia and bordered 
areas with Croatia, northeastern Poland, and western 

and central Baltics, as well as the coastal regions of 
western Norway, southern Finland, and Danish islands 
(Fig. 7C-D).

We assessed the total number and proportion (%) 
of NUTS-3 districts (n = 1155) with population den-
sities < 300/km2 (n-761), 300–1500/km2 (n = 266), 
and ≥ 1500/km2 (n = 128) that had predicted abso-
lute probabilities of TBEV occurrence of < 1%, 1- < 5%, 
5- < 15%, and ≥ 15% in each region (Fig.  7D; Fig.  8A-B). 

Fig. 4 Spatial distributions and magnitudes of a subset of individual predictors within environmental variable categories of topography, climate, 
animal hosts, and rodent reservoirs for machine-learning models. Regional disparities across the modeled regions can be seen in the maps 
for the individual predictors of elevation (A), “mean daily temperature in driest annual quarter” (B), “mean ratio days per month > 5 °C” (C), “total 
annual ‘wet’ days” (D), and relative suitability of fallow deer (Dama dama) (E) and yellow-necked mouse (Apodemus flavicollis) (F). Further details 
on the definitions of individual predictor variables are provided in File S2
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Fig. 5 Categorical explanatory variable contributions and ranking in maximum entropy (Maxent) and extreme gradient boosting (XGBoost) 
models in Central Europe, Nordics, and Baltics regions. Total contributions from the variable categories to predict habitat suitability (Maxent) 
(A) and probability of tick-borne encephalitis virus (TBEV) occurrence (XGBoost) (B) are shown in aggregate for each region. Further details 
on the variable contributions for each region and model are provided in Supplemental Materials

Fig. 6 Individual explanatory variable contributions and ranking in maximum entropy (Maxent) and extreme gradient boosting (XGBoost) models 
in Central Europe, Nordics, and Baltics regions. Variables included in each model are individually ranked according to their respective contributions 
to predict habitat suitability (permutation importance) or probability of tick-borne encephalitis virus (TBEV) occurrence (feature score) (A). The 
individual contributions of the top ten ranked variables for each region are illustrated in Maxent (B) and XGBoost (C) models. Further details 
on the variable contributions for each region and model are provided in Supplemental Materials
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Across all regions and districts, the XGBoost model pre-
dicted the majority (72.3%) to have a 1- < 5% (n = 467) 
or 5- < 15% (n = 368) absolute probability of TBEV 

occurrence (Fig.  8A). Twenty-one NUTS-3 districts in 
Central Europe with population densities ≥ 1500/km2 
had predicted absolute probabilities of TBEV occurrence 

Fig. 7 Predicted habitat suitability (A, B) and probability of tick-borne encephalitis virus (TBEV) occurrence (C, D) in Europe based 
on machine-learning algorithms. Predicted outputs for the relative habitat suitability (0–100) and absolute probability of TBEV occurrence were 
generated via maximum entropy (Maxent) and extreme gradient boosting (XGBoost), respectively. Maps are shown at spatial resolutions of 100 m 
(A and C) and aggregate NUTS-3 (B and D) scales. Note: maps in each figure are the combined predictive outputs generated from each regional 
model associated with “Central Europe”, “Nordics”, and “Baltics”
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of 5- < 15% (n = 18) or ≥ 15% (n = 3) (Fig.  8A) and not a 
single district in the Baltics regions (n = 92) had a pre-
dicted absolute probability of TBEV occurrence < 3.2% 
(Fig. 8A-B).

Discussion
In this study, we used multiple ML model approaches to 
generate high-resolution risk maps for TBE illustrating 
the predicted habitat suitability and probability of TBEV 
occurrence within three distinct regions of Europe. By 
incorporating sufficient explanatory variables related 
to features of climate, habitat, and abundance of animal 
hosts and rodent reservoirs, we demonstrated high ML 
model performance and accuracy to identify the region-
specific environmental factors associated with the occur-
rence of TBEV-infected ticks and rodent reservoirs. We 
also showed how different environmental variables were 
differentially associated with habitat suitability and TBEV 
occurrence across regions, emphasizing that multiple 
habitat ecotypes throughout Europe can support the 
establishment and stability of TBE foci. This novel and 
comprehensive approach demonstrates the utility of ML 
models to improve the precision and accuracy of TBE 
risk maps compared those available from public health 
agencies and national governments [3].

Comparing the explanatory variables associated 
with habitat suitability and predicted TBEV occurrence 
among regions
We observed differences in the environmental category 
variables associated with habitat suitability and probabil-
ity of TBEV occurrence among model regions. Among 
abiotic variables, features of climate contributed the 
most predictive power in Central Europe while eleva-
tion and land cover types more strongly contributed to 
the models in the Nordics and Baltics, respectively. Our 
results corroborate previous ML models in the central 
European countries of Germany and Czech Republic that 
report weather variables, like evapotranspiration, hot 
summer days, and increased temperature, are the strong-
est predictors of I. ricinus densities or TBEV foci relative 
to other environmental variables [6, 16, 44, 45] as well as 
ML models in the Baltic countries of Latvia and Lithu-
ania that report greater influence of landscape on TBE 
incidence [46–48]. Elevation was ranked in the top-three 
variable predictors for habitat suitability in all regions 
and was the strongest predictor of TBEV occurrence in 
the Nordics. Although XGBoost and Maxent models do 
not provide directional (positive vs. negative) coefficients 
for feature scoring and model importance, we can reliably 
conclude from our results that local TBEV transmission 

Fig. 8 Qualitative assessment of potential risk and local exposure to tick-borne encephalitis virus (TBEV) based on the predicted absolute 
probability of TBEV occurrence relative to population density among NUTS-3 districts in Europe. Predictive outputs for the probability of TBEV 
occurrence (x-axis) were generated at the NUTS-3 administrative level via extreme gradient boosting (XGBoost) machine-learning models 
and plotted relative to their respective population densities (/km2) (y-axis) as reported by the European Union (2019 and 2023). NUTS-3 districts 
were categorized as population densities of < 300/km2, 300–1500/km2, and ≥ 1500/km2 and grouped accordingly to the corresponding predicted 
probability of TBEV occurrence of < 1%, 1– < 5%, 5– < 15%, and ≥ 15%
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is unlikely to occur at altitudes over 600 m asl in the Nor-
dics due to decreased abundances of TBEV vectors in 
these environments [49]. We note, however, that the alti-
tudinal threshold for the presence of Ixodes vectors var-
ies according to latitude, explaining why elevation was a 
lower-ranked predictor of TBEV occurrence in Central 
Europe (7th) and the Baltics (11th) [50]. For example, 
increasing temperatures over the past few decades have 
allowed the altitudinal expansion of I. ricinus to eleva-
tions between 1000–1650  m asl and multiple coordi-
nates of TBEV-infected I. ricinus were detected in Czech 
Republic at altitudes of > 900  m asl and included in this 
study [51, 52].

Logically, areas with increased abundance of highly 
competent rodent reservoirs of TBEV are highly suitable 
habitat for local occurrence of TBEV. Aside from their 
moderate associations with habitat suitability and TBEV 
occurrence in the Nordics, the variables for rodent res-
ervoir abundance were the weakest categorical variable 
predictors across regions and models. Interestingly, the 
models identified different species as the top ranked ani-
mal host predictors of TBEV occurrence in each region. 
It is likely these animal host species are variably abundant 
(or absent) across the continent which influences host 
selection for blood feeding by vector ticks. Nevertheless, 
large mammals like red deer, roe deer, and fallow deer 
are ideal blood sources for adult ticks and amplify local 
TBEV circulation and enhance TBEV infection preva-
lence. In the Boreal and Alpine biogeographies in the 
Nordics, land use patterns, habitat types (forests), and 
variables for the abundance of deer and hare populations 
strongly predict TBE incidence and potential risk areas 
more so than variables of climate [18, 53, 54]. The unique 
environmental landscape in the Baltics supports the con-
tinued expansion and merger of the three main TBEV 
vector species: I. ricinus, I. persulcatus, and D. reticulatus 
[55]. The incidence of TBE in Baltic countries is the high-
est in the world, which cannot be accounted for by envi-
ronmental and climate variables alone [46, 56]. Overall, 
these findings emphasize the varying interplay between 
local ecological factors to drive TBE foci and TBE risk 
and strengthen the argument of regional specificity of 
suitable habitat ecotypes capable of supporting foci.

Previous studies have utilized ML approaches to 
measure spatial and temporal associations between 
the environment and epidemiological factors of TBE, 
with varying results. Our results contrast with a con-
tinental-wide ML model study that found only minor 
variation among environmental factor associations with 
self-reported point-of-infection of TBE across Europe [7]. 
The differences between studies largely stems from dif-
ferent approaches for model development such as which 
explanatory variables are included for interpretation 

(climate, habitat, anthropogenic, animal reservoirs, etc.), 
quality and congruence across data inputs (temporal 
interval, spatial unit, etc.), the geographic scope of the 
target territory (country, region, or continent), and the 
selected outcome or target variable for model prediction 
(habitat suitability; TBEV occurrence; TBE incidence, 
etc.). To generate the most reliable insights into which 
variables predict habitat suitability and TBEV occur-
rence, our model included sufficient explanatory variable 
data, comprehensive of the most relevant environmental 
factors for TBE foci. These variables included features of 
climate such as temperature, precipitation, and humid-
ity, habitat and land cover types, elevation, abundance 
of large mammalian hosts (deer species) important for 
tick reproduction, and abundance of rodent reservoirs of 
TBEV required for foci establishment. Importantly, mod-
els lacking the multitude of environmental variables that 
account for the multifactorial influence on TBE foci and 
incidence cannot properly assess for variable collinear-
ity nor reliably decouple individual variable associations 
with the epidemiological predictors of TBE. Ultimately, 
these models can lead to over- or under-estimations of 
redundant outputs or data misinterpretation. For exam-
ple, models in Germany, the Baltics, and continental 
Europe that have attempted to predict spatial or tempo-
ral associations between the climate and the occurrence 
of TBEV vectors and TBE incidence report conflicting 
results, which complicates our understanding of the cli-
matic factors that influence TBE incidence [14, 19, 46, 57, 
58]. Similarly, the development of a broad, continental-
wide model would likely have reduced our ability to accu-
rately predict habitat suitability and TBEV occurrence at 
high resolutions due to the greater variance in environ-
mental variables across vast regions for model training. 
Models that predict the spatial distribution of I. ricinus 
in Germany, for example, would not be optimal to pre-
dict the distribution of I. persulcatus in Finland due to 
the latter species’ preference for and resistance to colder, 
drier temperatures [59]. For these reasons and to better 
account for the regional variability among environmental 
factors in our study, we developed separate ML models 
for each geographic region and used tick and animal-
related endpoints of TBEV occurrence instead of human-
related endpoints (incidence, cases, etc.).

Ecological niche models utilizing Maxent and XGBoost 
algorithms are increasingly being used to model hazard 
risk metrics like the occurrence of TBEV-infected ticks 
and anti-TBEV seropositive animals offers several advan-
tages compared to endpoints related to human surveil-
lance data (e.g., reported cases or incidence). Models that 
rely on human surveillance for TBE likely introduce bias 
due to the challenges in distinguishing imported versus 
autochthonous cases both during clinical diagnosis and 
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reporting to surveillance databases [1]. Human surveil-
lance data are also a lagging indicator of risk and prone 
to under-ascertainment due to low clinical awareness of 
TBE, and in certain countries, lack of mandatory noti-
fication [1, 2, 60, 61]. Measuring relationships between 
environmental variables and TBE incidence, therefore, 
may result in false-positive or false-negative associations. 
Modeling the occurrence of TBEV via TBEV-infected 
ticks and animal surveillance improves cross-country 
comparisons through a harmonized and consistent 
approach across borders and regions which increases 
data congruence (spatially and temporally) and overall 
model precision.

Providing detailed risk maps is important due to the 
variable perception of tick-borne disease risk, especially 
in travelers who may have low awareness, knowledge, 
and experience with ticks and thus unknowingly increase 
their exposure to tick populations and susceptibility to 
disease [62]. Leveraging ML algorithms to identify new 
TBE risk areas can also help support evidence-based 
decisions to immunize residents of endemic areas, where 
vaccination rates remain low despite the availability 
and recommendations for use of two licensed TBE vac-
cines (including FSME-Immun® and Encepur®) [63, 64]. 
Although we did not incorporate human surveillance 
data in our models, our results provide insight into areas 
where incidence for TBE may be under-reported or more 
likely to rise in the future. Overall, the models’ predic-
tions of increased probabilities of TBEV occurrence are 
consistent with publicly-available human surveillance 
data reporting human incidence of TBE [65] in southern 
Germany, Latvia, and Lithuania, but are notably incon-
sistent for some regions with minimal or no reported 
cases including Bergen and the western coastlines of 
Norway, Zealand and Northern Jutland in Denmark, 
northeastern Croatia, and the Bolzano and Trentino 
provinces in Italy. Our models also corroborate prior ML 
algorithm model studies that predicted spatiotemporal 
TBEV foci risks broadly across Europe [15] and locally in 
Poland [31, 66], Sweden [17, 67], Finland [18], northern 
Italy [29], and align with a recent study that leveraged ML 
algorithms to predict the occurrence of human cases of 
TBE throughout Europe [68] and observed similar spatial 
distribution outputs. We note that modeled outputs of 
hazard risk for vector-borne pathogens, however, includ-
ing those in this study, are unable to capture human 
behaviors and movement patterns that influence indi-
vidual exposure to TBEV-infected ticks and may not nec-
essarily be predictive or indicative of tick-borne disease 
incidence which underscores the importance of model 
validation and incorporation of comprehensive explana-
tory variables to increase model reliability [27, 44].

Over the past thirty years, climate change has impacted 
the relationship between local environmental and epi-
demiological factors and tick-borne diseases. Ixodes 
persulcatus and other tick species have expanded across 
northern latitudes of Sweden and Finland [59, 69, 70], 
the duration and interannual variation of TBE cases is 
increasing [71, 72], and shifting (earlier) seasonal trends 
in host-seeking ticks and peak disease incidence have 
been observed among Lyme borreliosis cases in Nor-
way [73] as millions of migratory birds continually dis-
seminate new ticks across the world [74]. The emphasis 
on climate-based models to predict future trends of the 
potential burden of tick-borne diseases according to cli-
mate change scenarios is problematic since these pro-
jections are unable to comprehensively consider the 
influence of other biotic variables (e.g., animal hosts, 
reservoirs, and vectors) required for the zoonotic disease 
transmission. Therefore, a comprehensive understand-
ing of the environmental drivers that result in increased 
human exposure and infection of TBEV is critical for 
effective public health communication and public pre-
paredness. Predictive models should incorporate other 
explanatory covariates and passive indicators which 
cannot be evaluated through real-world data such as 
internet-based search trends [75], social media [76], risk 
perception studies [77], and human movement patterns 
[78–80]. Importantly, we emphasize increased data trans-
parency and sharing of model inputs to support broader 
collaboration and development of optimized models to 
make greater impact(s) on public health policy [21, 81, 
82].

Limitations
This study has some limitations. Surveillance bias of col-
lected ticks and animals likely contributed to the extrac-
tion of TBEV occurrence geocoordinates and subsequent 
cluster selection of regional models [60]. We did not vali-
date the continued persistence of TBEV occurrence over 
time among the geocoordinates included for model train-
ing as TBE foci are often fragile and can disappear (and 
reappear) over time unnoticed [3, 26]. We accounted 
for the potential short-term stability and likely disap-
pearance for some of the locations with reported TBEV 
occurrence sites by limiting the inclusion of extracted 
coordinates to those identified in 2000 or later. The 
period from 2000 onward allowed for the extraction of 
required observations to sufficiently power the models 
and generate more up-to-date risk maps. Studies that 
collect and report the historical locations of TBE foci or 
with previous detection of TBEV over long-term periods 
(e.g., pre-2000 through 2024) are useful to describe tem-
poral associations with TBE incidence but are less precise 
when modeling the data as static variables in aggregate. 
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However, we note the importance of studies to collect 
data over long temporal durations to confirm the stability 
of identified foci [83].

We excluded coordinates of TBEV occurrence associ-
ated with large animal hosts (Cervids) and domesticated 
animals (dogs, cows, sheep, etc.) from the model as these 
species are non-competent reservoirs for TBEV and 
would have decreased model precision due to their ability 
to cover vast ranges or their non-relevance in the enzo-
otic cycle. Expanding the target territory to countries 
such as Romania, Hungary, and Turkey would also have 
provided additional data for model training. Although 
we included sufficiently broad, comprehensive epidemi-
ologically-relevant environmental factors as explanatory 
variables in the models, other factors that likely con-
tribute to TBE risk such as human behavior, socio-eco-
nomics, and public health policies were not included for 
model training. For example, it is well documented that 
the incidence of TBE in the Baltics and Eastern Europe 
is related to socio-economics hardship, changing land 
use patterns and evolving public health policies due to 
political changes since the fall of the Soviet Union [47, 48, 
84–87]. The observed disparities in model results across 
European regions could also be explained by additional 
ecological or seasonal variables (either directly or indi-
rectly) that were not included for modeling such as beech 
tree masting, tick phenology, or tick co-feeding dynamics 
[88–92]. Our geographic clustered regional models may 
not be ideal for comparisons across specific borders (e.g. 
between Germany and Poland) or within specific geog-
raphies (e.g., between Denmark and Sweden). Alternative 
approaches could model these countries together given 
their geographic proximity and greater spatial continuity 
[93]. Predictive spatial distribution outputs and identified 
associations between environmental factors and TBEV 
occurrence may also have been influenced by the “chang-
ing the modifiable area unit” problem according to the 
spatial area and unit selected for modeling [94]. Although 
powerful ML approaches like XGBoost can measure 
non-linear relationships and handle high levels of data 
variance, we provided illustrative risk maps at high reso-
lutions (Fig. 7A and C) and broader spatial scales of local 
administrative units or NUTS-3 districts (Fig.  7B and 
D), which can be more useful for dissemination of public 
health information. The manual extraction of geocoordi-
nates of TBEV occurrence using the centroid of reported 
administrative districts are also approximations of the 
potential site location of the original study which could 
bias model results. Precision of output targets is similarly 
diluted when aggregating point-specific (0.01 degree) 
mapping predictions at the NUTS-3 level which is most 
relevant for NUTS-3 districts across vast landmasses like 
those in northern Scandinavian countries.

Conclusions
This study demonstrates the utility of robust ML model 
approaches to reliably predict where TBEV may be cir-
culating and define the habitat areas that can support 
viral occurrence due to local features in the environment. 
Our work also emphasizes the importance of region-
specific ML model approaches that incorporate sufficient 
explanatory variables to accurately inform which eco-
logical factors are most critical for TBEV enzootic risks. 
Importantly, our models identified different environmen-
tal variables as the most important predictors for the 
occurrence of TBEV in three separate European regions, 
indicating how region-specific ecosystems support the 
establishment and stability of TBEV foci. Ultimately, the 
results from our ML models can drive increases in the 
public’s awareness of potential TBE risk and help national 
governments and public health agencies prioritize sur-
veillance efforts and resources to areas with potential 
under-reporting of TBE cases.
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